Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
ACS Nano ; 17(10): 9167-9177, 2023 05 23.
Article in English | MEDLINE | ID: covidwho-2320864

ABSTRACT

Nanopores are label-free single-molecule analytical tools that show great potential for stochastic sensing of proteins. Here, we described a ClyA nanopore functionalized with different nanobodies through a 5-6 nm DNA linker at its periphery. Ty1, 2Rs15d, 2Rb17c, and nb22 nanobodies were employed to specifically recognize the large protein SARS-CoV-2 Spike, a medium-sized HER2 receptor, and the small protein murine urokinase-type plasminogen activator (muPA), respectively. The pores modified with Ty1, 2Rs15d, and 2Rb17c were capable of stochastic sensing of Spike protein and HER2 receptor, respectively, following a model where unbound nanobodies, facilitated by a DNA linker, move inside the nanopore and provoke reversible blockade events, whereas engagement with the large- and medium-sized proteins outside of the pore leads to a reduced dynamic movement of the nanobodies and an increased current through the open pore. Exploiting the multivalent interaction between trimeric Spike protein and multimerized Ty1 nanobodies enabled the detection of picomolar concentrations of Spike protein. In comparison, detection of the smaller muPA proteins follows a different model where muPA, complexing with the nb22, moves into the pore, generating larger blockage signals. Importantly, the components in blood did not affect the sensing performance of the nanobody-functionalized nanopore, which endows the pore with great potential for clinical detection of protein biomarkers.


Subject(s)
COVID-19 , Nanopores , Single-Domain Antibodies , Mice , Animals , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Proteins , DNA
2.
Advanced Materials Technologies ; 2023.
Article in English | Scopus | ID: covidwho-2253439

ABSTRACT

The COVID-19 pandemic, which began in 2019, has highlighted the importance of testing and tracking infected individuals as a means of mitigating the spread of the virus. In this context, the development of sensitive and rapid methods for the detection of SARS-CoV-2, the virus responsible for COVID-19, is crucial. Here, a biosensor based on oligonucleotide-gated nanomaterials for the specific detection of SARS-CoV-2 spike protein is presented. The sensing system consists of a nanoporous anodic alumina disk loaded with the fluorescent indicator rhodamine B and capped with a DNA aptamer that selectively binds the SARS-CoV-2 spike protein. The system is initially evaluated using pseudotype virus systems based on vesicular stomatitis virus carrying different SARS-CoV-2 S-proteins on their surface. When the pseudotype virus is present, the cap of the solid is selectively removed, triggering the release of the dye from the pore voids to the medium. The nanodevice demonstrated its ability to detect pseudotype virus concentrations as low as 7.5·103 PFU mL. In addition, the nanodevice is tested on nasopharyngeal samples from individuals suspected of having COVID-19. © 2023 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH.

3.
Microelectron Eng ; 267: 111912, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2244854

ABSTRACT

COVID-19 has spread worldwide and early detection has been the key to controlling its propagation and preventing severe cases. However, diagnostic devices must be developed using different strategies to avoid a shortage of supplies needed for tests' fabrication caused by their large demand in pandemic situations. Furthermore, some tropical and subtropical countries are also facing epidemics of Dengue and Zika, viruses with similar symptoms in early stages and cross-reactivity in serological tests. Herein, we reported a qualitative immunosensor based on capacitive detection of spike proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. The sensor device exhibited a good signal-to-noise ratio (SNR) at 1 kHz frequency, with an absolute value of capacitance variation significantly smaller for Dengue and Zika NS1 proteins (|ΔC| = 1.5 ± 1.0 nF and 1.8 ± 1.0 nF, respectively) than for the spike protein (|ΔC| = 7.0 ± 1.8 nF). Under the optimized conditions, the established biosensor is able to indicate that the sample contains target proteins when |ΔC| > 3.8 nF, as determined by the cut-off value (CO). This immunosensor was developed using interdigitated electrodes which require a measurement system with a simple electrical circuit that can be miniaturized to enable point-of-care detection, offering an alternative for COVID-19 diagnosis, especially in areas where there is also a co-incidence of Zika and Dengue.

4.
Adv Sci (Weinh) ; : e2204779, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2240097

ABSTRACT

Van der Waals (vdW) heterostructures composed of atomically thin two-dimensional (2D) materials have more potential than conventional metal-oxide semiconductors because of their tunable bandgaps, and sensitivities. The remarkable features of these amazing vdW heterostructures are leading to multi-functional logic devices, atomically thin photodetectors, and negative differential resistance (NDR) Esaki diodes. Here, an atomically thin vdW stacking composed of p-type black arsenic (b-As) and n-type tin disulfide (n-SnS2 ) to build a type-III (broken gap) heterojunction is introduced, leading to a negative differential resistance device. Charge transport through the NDR device is investigated under electrostatic gating to achieve a high peak-to-valley current ratio (PVCR), which improved from 2.8 to 4.6 when the temperature is lowered from 300 to 100 K. At various applied-biasing voltages, all conceivable tunneling mechanisms that regulate charge transport are elucidated. Furthermore, the real-time response of the NDR device is investigated at various streptavidin concentrations down to 1 pm, operating at a low biasing voltage. Such applications of NDR devices may lead to the development of cutting-edge electrical devices operating at low power that may be employed as biosensors to detect a variety of target DNA (e.g., ct-DNA) and protein (e.g., the spike protein associated with COVID-19).

5.
Sens Actuators B Chem ; 371: 132526, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-1984047

ABSTRACT

The early detection of biomarker proteins in clinical samples is of great significance for the diagnosis of diseases. However, it is still a challenge to detect low-concentration protein. Herein, a label-free aptamer-based amplification assay, termed the ATC-TA system, that allows fluorescence detection of very low numbers of protein without time-consuming washing steps and pre-treatment was developed. The target induces a conformational change in the allosteric aptasensor, triggers the target cycling and transcription amplification, and ultimately converts the input of the target protein into the output of the light-up aptamer (R-Pepper). It exhibits ultrahigh sensitivity with a detection limit of 5.62 fM at 37 â„ƒ and the accuracy is comparable to conventional ELISA. ATC-TA has potential application for the detection of endogenous PDGF-BB in serum samples to distinguish tumor mice from healthy mice at an early stage. It also successfully detects exogenous SARS-CoV-2 spike proteins in human serum. Therefore, this high-sensitive, universality, easy-to-operate and cost-effective biosensing platform holds great clinical application potential in early clinical diagnosis.

6.
Anal Chim Acta ; 1225: 340203, 2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-1982437

ABSTRACT

Early rapid screening diagnostic assay is essential for the identification, prevention, and evaluation of many contagious or refractory diseases. The optical density transducer created by platinum nanoparticles (PtNPs) (OD-CRISPR) is reported in the present research as a cheap and easy-to-execute CRISPR/Cas12a-based diagnostic platform. The OD-CRISPR uses PtNPs, with ultra-high peroxidase-mimicking activity, to increase the detection sensitivity, thereby enabling the reduction of detection time and cost. The OD-CRISPR can be utilized to identify nucleic acid or protein biomarkers within an incubation time of 30-40min in clinical specimens. In the case of taking severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N gene as an instance, when compared to a quantitative reverse transcription-polymerase chain reaction (RT-qPCR), the OD-CRISPR test attains a sensitivity of 79.17% and a specificity of 100%. In terms of detecting prostate-specific antigen (PSA), aptamer-based OD-CRISPR assay achieves the least discoverable concentration of 0.01 ng mL-1. In general, the OD-CRISPR can detect nucleic acid and protein biomarkers, and is a potential strategy for early rapid screening diagnostic tools.


Subject(s)
COVID-19 , Metal Nanoparticles , Nucleic Acids , CRISPR-Cas Systems , Humans , Nucleic Acid Amplification Techniques , Platinum , SARS-CoV-2
7.
Front Bioeng Biotechnol ; 10: 952510, 2022.
Article in English | MEDLINE | ID: covidwho-1974640

ABSTRACT

Coronavirus disease 19 (COVID-19) is still a major public health concern in many nations today. COVID-19 transmission is now controlled mostly through early discovery, isolation, and therapy. Because of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the contributing factor to COVID-19, establishing timely, sensitive, accurate, simple, and budget detection technologies for the SARS-CoV-2 is urgent for epidemic prevention. Recently, several electrochemical DNA biosensors have been developed for the rapid monitoring and detection of SARS-CoV-2. This mini-review examines the latest improvements in the detection of SARS-COV-2 utilizing electrochemical DNA biosensors. Meanwhile, this mini-review summarizes the problems faced by the existing assays and puts an outlook on future trends in the development of new assays for SARS-CoV-2, to provide researchers with a borrowing role in the generation of different assays.

8.
Biosens Bioelectron ; 213: 114436, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-1944325

ABSTRACT

The emergence of the COVID-19 epidemic has affected the lives of hundreds of millions of people globally. There is no doubt that the development of fast and sensitive detection methods is crucial while the worldwide effective vaccination programs are miles away from actualization. In this study, we have reported an electrochemical N protein aptamer sensor with complementary oligonucleotide as probe for the specific detection of COVID-19. The electrochemical aptasensor was prepared by fixing the double-stranded DNA hybrid obtained by the hybridization of N protein aptamer and its Fc-labeled complementary strand on the surface of a gold electrode. After incubation with the target, the aptamer dissociated from the labeled complementary DNA oligonucleotide hybrid to preferentially bind with N protein in the solution. The concentration of N protein was measured by detecting the changes in electrochemical current signals induced by the conformational transformation of the complementary DNA oligonucleotide left on the electrode surface. The sensor had a linear relationship between the logarithm of the N protein concentration from 10 fM to 100 nM (ΔIp = 0.098 log CN protein/fM - 0.08433, R2 = 0.99), and the detection limitation was 1 fM (S/N = 3). The electrochemical aptamer sensor was applied to test the spiked concentrations of throat swabs and blood samples from three volunteers, and the obtained results proved that the sensor has great potentials for the early detection of COVID-19 in patients.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , COVID-19/diagnosis , DNA, Complementary , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Humans , Limit of Detection , Protein Binding
9.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Article in English | MEDLINE | ID: covidwho-1810054

ABSTRACT

Field-effect transistors (FET) composed of transition metal dichalcogenide (TMDC) materials have gained huge importance as biosensors due to their added advantage of high sensitivity and moderate bandgap. However, the true potential of these biosensors highly depends upon the quality of TMDC material, as well as the orientation of receptors on their surfaces. The uncontrolled orientation of receptors and screening issues due to crossing the Debye screening length while functionalizing TMDC materials is a big challenge in this field. To address these issues, we introduce a combination of high-quality monolayer WSe2 with our designed Pyrene-based receptor moiety for its ordered orientation onto the WSe2 FET biosensor. A monolayer WSe2 sheet is utilized to fabricate an ideal FET for biosensing applications, which is characterized via Raman spectroscopy, atomic force microscopy, and electrical prob station. Our construct can sensitively detect our target protein (streptavidin) with 1 pM limit of detection within a short span of 2 min, through a one-step functionalizing process. In addition to having this ultra-fast response and high sensitivity, our biosensor can be a reliable platform for point-of-care-based diagnosis.

10.
Talanta ; 244: 123381, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1747550

ABSTRACT

The early diagnosis of Coronavirus disease (COVID-19) requires either an accurate detection of genetic material or a sensitive detection of viral proteins. In this work, we designed an immunoassay platform for detecting trace levels of SARS-CoV-2 spike (S) protein. It is based on surface-enhanced resonance Raman scattering (SERRS) of methylene blue (MB) adsorbed onto spherical gold nanoparticles (AuNPs) and coated with a 6 nm silica shell. The latter shell in the SERRS nanoprobe prevented aggregation and permitted functionalization with SARS-CoV-2 antibodies. Specificity of the immunoassay was achieved by combining this functionalization with antibody immobilization on the cover slides that served as the platform support. Different concentrations of SARS-CoV-2 antigen could be distinguished and the lack of influence of interferents was confirmed by treating SERRS data with the multidimensional projection technique Sammon's mapping. With SERRS using a laser line at 633 nm, the lowest concentration of spike protein detected was 10 pg/mL, achieving a limit of detection (LOD) of 0.046 ng/mL (0.60 pM). This value is comparable to the lowest concentrations in the plasma of COVID-19 patients at the onset of symptoms, thus indicating that the SERRS immunoassay platform may be employed for early diagnosis.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Biosensing Techniques/methods , COVID-19/diagnosis , Gold , Humans , Immunoassay/methods , SARS-CoV-2 , Spectrum Analysis, Raman , Spike Glycoprotein, Coronavirus
11.
Progress in Biochemistry and Biophysics ; 49(1):233-241, 2022.
Article in English | Web of Science | ID: covidwho-1667803

ABSTRACT

Proteins are the executors of various kinds of metabolism and regulation in cells and they are also the most important target molecules of pathogenic factors and drugs. The study of protein expression is necessary to understand life, disease processes and drug effects. At present, routine protein detection methods in clinical practice require the support of large equipment. However, with the development of medical technologies and especially under the special background of the coronavirus (COVID-19) pandemic, point-of-care testing (POCT, also known as on-site testing and bedside testing) has become the current development trend. POCT can improve the ways of interaction between patients and doctors and create a positive approach to medical treatment. In addition to diagnosing and treating diseases, POCT has advantages in both on-site and remote detection for personnel engaged in emergency work. Therefore, it is very important to develop accurate, sensitive, simple and fast protein POCT. To develop miniature devices for POCT, many new approaches have been attempted in recent years, including microfluidics, electrochemical biosensors, smart phones, artificial intelligence, and wearable devices. Microfluidics deals with small quantities of samples and is a universal platform for integrating a variety of technologies, such as immunochemistry, electrochemistry, and mass spectrometry. With microfluidic technology, the sample size, reaction time, and detection limit could be easily improved to satisfactory levels. The use of electrochemistry in detecting proteins has opened a new field in POCT. Since the core of electrochemistry lies in the nanocatalyst development, the rapidly growing research on nanomaterials also has facilitated and expanded the areas of POCT applications. Furthermore, the current frontier technologies employing 5G, artificial intelligence, and wearable devices have not only generated new possibilities but also greatly inspired scientists to create novel POCT devices. In conclusion, with the increasing demand of people and the continuous progress of science and technology, the development direction of future protein detection methods will be focused on portability, intellectualization, rapidity, integration of diagnosis and treatment by multidisciplinary approaches for better application in clinical practice and applicability for bedside and home testing.

12.
Talanta ; 240: 123197, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1586446

ABSTRACT

The current outbreaking of the coronavirus SARS-CoV-2 pandemic threatens global health and has caused serious concern. Currently there is no specific drug against SARS-CoV-2, therefore, a fast and accurate diagnosis method is an urgent need for the diagnosis, timely treatment and infection control of COVID-19 pandemic. In this work, we developed a field effect transistor (FET) biosensor based on graphene oxide-graphene (GO/Gr) van der Waals heterostructure for selective and ultrasensitive SARS-CoV-2 proteins detection. The GO/Gr van der Waals heterostructure was in-situ formed in the microfluidic channel through π-π stacking. The developed biosensor is capable of SARS-CoV-2 proteins detection within 20 min in the large dynamic range from 10 fg/mL to 100 pg/mL with the limit of detection of as low as ∼8 fg/mL, which shows ∼3 × sensitivity enhancement compared with Gr-FET biosensor. The performance enhancement mechanism was studied based on the transistor-based biosensing theory and experimental results, which is mainly attributed to the enhanced SARS-CoV-2 capture antibody immobilization density due to the introduction of the GO layer on the graphene surface. The spiked SARS-CoV-2 protein samples in throat swab buffer solution were tested to confirm the practical application of the biosensor for SARS-CoV-2 proteins detection. The results indicated that the developed GO/Gr van der Waals heterostructure FET biosensor has strong selectivity and high sensitivity, providing a potential method for SARS-CoV-2 fast and accurate detection.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Humans , Pandemics , SARS-CoV-2
13.
Nano Lett ; 21(5): 2272-2280, 2021 03 10.
Article in English | MEDLINE | ID: covidwho-1104424

ABSTRACT

To effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach toward this end. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein. The presence of the SARS-CoV-2 spike protein elicits a robust, 2-fold nanosensor fluorescence increase within 90 min of spike protein exposure. We characterize the nanosensor stability and sensing mechanism and passivate the nanosensor to preserve sensing response in saliva and viral transport medium. We further demonstrate that these ACE2-SWCNT nanosensors retain sensing capacity in a surface-immobilized format, exhibiting a 73% fluorescence turn-on response within 5 s of exposure to 35 mg/L SARS-CoV-2 virus-like particles. Our data demonstrate that ACE2-SWCNT nanosensors can be developed into an optical tool for rapid SARS-CoV-2 detection.


Subject(s)
Biosensing Techniques/methods , COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/virology , Nanotubes, Carbon , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Angiotensin-Converting Enzyme 2/metabolism , Antigens, Viral/analysis , Humans , Immobilized Proteins/metabolism , Nanotechnology , Pandemics , Protein Binding , SARS-CoV-2/immunology , Spectrometry, Fluorescence , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
14.
J Proteome Res ; 19(11): 4407-4416, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-960283

ABSTRACT

Rapid but yet sensitive, specific, and high-throughput detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples is key to diagnose infected people and to better control the spread of the virus. Alternative methodologies to PCR and immunodiagnostics that would not require specific reagents are worthy to investigate not only for fighting the COVID-19 pandemic but also to detect other emergent pathogenic threats. Here, we propose the use of tandem mass spectrometry to detect SARS-CoV-2 marker peptides in nasopharyngeal swabs. We documented that the signal from the microbiota present in such samples is low and can be overlooked when interpreting shotgun proteomic data acquired on a restricted window of the peptidome landscape. In this proof-of-concept study, simili nasopharyngeal swabs spiked with different quantities of purified SARS-CoV-2 viral material were used to develop a nanoLC-MS/MS acquisition method, which was then successfully applied on COVID-19 clinical samples. We argue that peptides ADETQALPQR and GFYAQGSR from the nucleocapsid protein are of utmost interest as their signal is intense and their elution can be obtained within a 3 min window in the tested conditions. These results pave the way for the development of time-efficient viral diagnostic tests based on mass spectrometry.


Subject(s)
Betacoronavirus/chemistry , Clinical Laboratory Techniques/methods , Coronavirus Infections , Nasopharynx/virology , Pandemics , Pneumonia, Viral , Tandem Mass Spectrometry/methods , COVID-19 , COVID-19 Testing , Chromatography, Liquid , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Humans , Nucleocapsid Proteins/chemistry , Phosphoproteins , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2
15.
Exp Ther Med ; 20(5): 13, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-771405

ABSTRACT

COVID-19 is caused by a novel coronavirus (2019-nCoV or SARS-CoV-2) and has become a global public health emergency. Rapid and accurate molecular diagnostic technologies are crucial for the screening, isolation, treatment, prevention and control of COVID-19. Currently, nucleic acid detection-based techniques and rapid diagnostic tests that detect antigens or antibodies specific to 2019-nCoV infections are the primary diagnostic tools. China National Medical Products Administration has opened a special channel for approval of new pharmaceuticals owing to urgent clinical needs, with 18 nucleic acid detection kits, 11 protein detection kits and 1 sequencing-related equipment and supporting software having been approved until April 23, 2020. The current review summarizes the application situation, advantages, disadvantages and associated technology improvement trends of molecular diagnostics for COVID-19 in China, identifies knowledge gaps and indicates future priorities for research in this field. The most effective way to prevent and control COVID-19 is early detection, diagnosis, isolation and treatment. In the clinical application of molecular diagnosis technology, it is necessary to combine pathogenic microbiology, immunology and other associated detection technologies, advocate the combination of multiple technologies, determine how they complement each other, enhance practicability and improve the ability of rapid and accurate diagnosis and differential diagnosis of COVID-19.

16.
Adv Healthc Mater ; 10(4): e2001111, 2021 02.
Article in English | MEDLINE | ID: covidwho-746169

ABSTRACT

Measurements of multiple biomolecules within the same biological sample are important for many clinical applications to enable accurate disease diagnosis or classification. These disease-related biomarkers often exist at very low levels in biological fluids, necessitating ultrasensitive measurement methods. Single-molecule arrays (Simoa), a bead-based digital enzyme-linked immunosorbent assay, is the current state of the art for ultrasensitive protein detection and can detect sub-femtomolar protein concentrations, but its ability to achieve high-order multiplexing without cross-reactivity remains a challenge. Here, a sequential protein capture approach for multiplex Simoa assays is implemented to eliminate cross-reactivity between binding reagents by sequentially capturing each protein analyte and then incubating each capture bead with only its corresponding detection antibody. This strategy not only reduces cross-reactivity to background levels and significantly improves measurement accuracies, but also enables higher-order multiplexing. As a proof of concept, the sequential multiplex Simoa assay is used to measure five different cytokines in plasma samples from Coronavirus Disease 2019 (COVID-19) patients. The ultrasensitive sequential multiplex Simoa assays will enable the simultaneous measurements of multiple low-abundance analytes in a time- and cost-effective manner and will prove especially critical in many cases where sample volumes are limited.


Subject(s)
Biological Assay , Cross Reactions/immunology , Proteins/analysis , COVID-19/blood , COVID-19/virology , Calibration , Cytokines/blood , Humans , Reproducibility of Results , SARS-CoV-2/physiology
17.
Emerg Microbes Infect ; 9(1): 1712-1721, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-632216

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has resulted in a pandemic and is continuing to spread rapidly around the globe. No effective vaccine is currently available to prevent COVID-19, and intense efforts are being invested worldwide into vaccine development. In this context, all technology platforms must overcome several challenges resulting from the use of an incompletely characterized new virus. These include finding the right conditions for virus amplification for the development of vaccines based on inactivated or attenuated whole viral particles. Here, we describe a shotgun tandem mass spectrometry workflow, the data produced can be used to guide optimization of the conditions for viral amplification. In parallel, we analysed the changes occurring in the host cell proteome following SARS-CoV-2 infection to glean information on the biological processes modulated by the virus that could be further explored as potential drug targets to deal with the pandemic.


Subject(s)
Antigens, Viral/biosynthesis , Betacoronavirus/immunology , Proteomics/methods , Viral Vaccines/immunology , Virion/immunology , Animals , Antigens, Viral/immunology , Chlorocebus aethiops , SARS-CoV-2 , Tandem Mass Spectrometry , Vero Cells
18.
Proteomics ; 20(14): e2000107, 2020 07.
Article in English | MEDLINE | ID: covidwho-419474

ABSTRACT

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a crucial tool for fighting the COVID-19 pandemic. This dataset brief presents the exploration of a shotgun proteomics dataset acquired on SARS-CoV-2 infected Vero cells. Proteins from inactivated virus samples were extracted, digested with trypsin, and the resulting peptides were identified by data-dependent acquisition tandem mass spectrometry. The 101 peptides reporting for six viral proteins were specifically analyzed in terms of their analytical characteristics, species specificity and conservation, and their proneness to structural modifications. Based on these results, a shortlist of 14 peptides from the N, S, and M main structural proteins that could be used for targeted mass-spectrometry method development and diagnostic of the new SARS-CoV-2 is proposed and the best candidates are commented.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/virology , Peptides/analysis , Pneumonia, Viral/virology , Viral Proteins/analysis , Amino Acid Sequence , Animals , Betacoronavirus/isolation & purification , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/diagnosis , Humans , Pandemics , Pneumonia, Viral/diagnosis , Proteomics , SARS-CoV-2 , Tandem Mass Spectrometry , Vero Cells , Viral Structural Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL